# Years of Computing at Los Alamos National Laboratory

From Day I, Los Alamos (LANL) has used high-performance computing (HPC). Since its inception in 1943, LANL has been a leader in HPC — both in making breakthroughs in every generation of computational technology and in advancing science.

#### 1940s



Bomb calculations at the start of the Manhattan Project, which began in 1943, were done using mechanical calculators and early IBM punched-card tabulators and collators.

# 1950s



By the early 1950s, the MANIAC was used to carry out calculations necessary for

- hydrogen bomb research
- studies of thermodynamics
- simulations using the Monte Carlo method
- attempts to decode DNA

#### 1960s



In the early 1960s Stretch was IBM's first computer built of transistors. Stretch 35 times more powerful than Maniac II.

#### 1970s



In 1976 the *Cray-1* was the Lab's first vector rather than scalar supercomputer. It could perform a single operation on every element in a large set of data without having to read the operation from memory more than once.

#### 1980s



The Cray X-MP was unveiled in 1982, as a more tightly engineered version of the Cray-1 that also possessed two identical processors. The "symmetric multiprocessors," or SMP's, represented parallelism on a small scale but foreshadowed the direction of things to come.

## 1990s



In 1998, Los Alamos and Silicon Graphics unveiled the world's fastest computer. *Blue Mountain* ran the speed test for supercomputers at a fast 1.6 trillion operations per second (teraOps).

## 2000s



Roadrunner supercomputer made history as the world's most powerful in 2009 when it exceeded a sustained speed of I petaflop/s. Roadrunner demonstrated to industry that hierarchical architecture is the path forward.

## **Today**



Cielo was a return to the conventional principles of massively parallel computing for Los Alamos. Cielo is the fastest supercomputer available at the Laboratory and serves as its main workhorse for scientific computing.

# **Future**



Future supercomputers will improve assessment of the nuclear stockpile. With the new *Trinity* supercomputer, our goal is to provide the supercomputing power for new high-resolution 3D simulations of nuclear weapons. This will allow us to better assess the health of the weapons in the U.S. nuclear deterrent.

FUNDING AGENCY: NNSA Advanced Simulation & Computing Program

FUNDING ACKNOWLEDGEMENT: National Nuclear Security Agency of the U.S. DOE under contract DE-AC5206NA25396.







